
COP 3223: C Programming (Strings – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Strings In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Strings – Part 1) Page 2 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• So far in this course, we‟ve done very little with characters,

although we have used them a little bit in a few of the programs in

the notes. The reason for this is that, by themselves, characters are

not terribly useful in many programs.

• However, strings of characters, or simply strings, are quite useful

in many applications.

• A string is a series of characters treated as a single unit.

• Some programming languages, such as Java, define a special

string type, C does not have a special string data type.

• A string in C is an array of characters ending with the null
character („\0‟ – used to mark the end of the string). A string is

accessed via a pointer to the first character in the string.

COP 3223: C Programming (Strings – Part 1) Page 3 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• Thus, in C, it is appropriate to say that a string is a pointer. In

fact, it is a pointer to the string‟s first character. The first

character is in index position 0. In this sense, strings are like

arrays, because an array is also a pointer to its first element.

• In C it is possible to define both string literals and string variables.

• A string literal (also called a string constant) is a sequence of
characters enclosed within double quotes, such as “Please

enter an integer value:”.

• We‟ve used string literals quite a lot in our programs this

semester. String literals commonly appear as format strings in
calls to printf or scanf.

• What is actually being passed to scanf or printf when a

string literal is sent to the function?

COP 3223: C Programming (Strings – Part 1) Page 4 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• String literals are treated as arrays by the C compiler, so when the
C compiler encounters a string literal of length n in a program, it

sets aside n+1 contiguous bytes of memory for the string. The n

locations contain the characters in the string and the n+1 location

contains the null character („\0‟).

The null character (‘\0’) is a byte whose bits are all zero (i.e., 00000000), so it is

represented by the \0 escape sequence.

Do not confuse the null character (‘\0’) with the zero character (‘0’). The null character

has the ASCII code 0, while the zero character has the ASCII code 48.

Equivalents: ASCII Name C escape sequence meaning

nul \0 null byte

bel \a bell character

bs \b backspace

ht \t horizontal tab

np \f form feed

nl \n new line

cr \r carriage return

COP 3223: C Programming (Strings – Part 1) Page 5 © Dr. Mark J. Llewellyn

7 bit ASCII Table (27 = 128)

COP 3223: C Programming (Strings – Part 1) Page 6 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• Consider the string literal “Hello”. This will be stored in an

array of six characters as shown:

• An empty string literal, denoted as: “”, will be stored as a single

null character.

• Since a string literal is stored as an array, the compiler treats it as a
pointer of type char *. Both printf and scanf, expect a

value of type char * as their first argument.

H e l l o \0

0 1 2 3 4 5

\0

0

COP 3223: C Programming (Strings – Part 1) Page 7 © Dr. Mark J. Llewellyn

The address

of
STRING[0]

is passed to
printf

when the call

is made.

COP 3223: C Programming (Strings – Part 1) Page 8 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• It is important to understand the difference between a string literal

and a character constant.

• In C, „a‟ and “a”, are two very different beasts.

• „a‟ is a character constant, which occupies one byte in memory.

The value stored in the memory location is (97)10 = (141)8 =

(01100001)2 .

• “a” is a string literal, which will be stored in an array containing

two locations, the first containing the ASCII code for the „a‟
character and the second containing the null character.

0110 0001

0110 0001 0000 0000

0 1

COP 3223: C Programming (Strings – Part 1) Page 9 © Dr. Mark J. Llewellyn

String Variables In C

• While string literals are an important concept in C and

understanding how they work is important, from an application

point of view, string variables are much more important and

interesting.

• The length of a string of characters is determined by the position

of the null character and not the size of the allocation of the array.

This means that there is no quicker way to determine the length of

a string than a character by character search for the null character.

Since character strings always terminate with the null character, this means that you

must declare the size of arrays that are used to hold strings to be one larger than the

longest possible string of characters that the array might contain in order to allow room

for the terminating null character. You’ll forget this so I’ll remind you again later ☺!

COP 3223: C Programming (Strings – Part 1) Page 10 © Dr. Mark J. Llewellyn

Initializing A String Variable

• A string variable can be initialized at the same time it is declared,

just as with other variables in C.

• Thus, the declaration: char date[9] = “March 18”;

would produce:

• Although the declaration and initialization makes “March 18”

appear as a string literal, it‟s not. Instead, C views it as an

abbreviation for an array initializer, much in the same way that we

have done for integer arrays. In other words, we could have

written the declaration as:

char date[9] = {„M‟, „a‟, „r‟, „c‟, „h‟, „ ‟, „1‟, „8‟, „\0‟};

M a r c h 1 8 \0

0 1 2 3 4 5 6 7 8

COP 3223: C Programming (Strings – Part 1) Page 11 © Dr. Mark J. Llewellyn

Reading Strings Using scanf

• Strings can be read into a character array using scanf in much

the same way that integers can be read into an integer array using

scanf.

• The conversion specifier for strings in C is %s.

• Assuming we had declared char name[10];. We could do

the following: scanf(“%s”, name);

• Since name is a character array and hence a pointer, the address

operator (&) is not needed on the name variable.

• The scanf function ignores leading white-space and the input

string is terminated by any white-space.

• The program on the following page illustrates using scanf to read

in a string of characters and print them out.

COP 3223: C Programming (Strings – Part 1) Page 12 © Dr. Mark J. Llewellyn

White

space

is

skipped

COP 3223: C Programming (Strings – Part 1) Page 13 © Dr. Mark J. Llewellyn

Character Arrays (Strings) Versus Character Pointers

• Consider the following two declarations:

char date[] = “March 18”;

char *date = “March 18”;

• The first declares date to be an array of characters (a string).

The second declares date to be a pointer.

• Since arrays and pointers are so closely related in C, either version
of date can be used as a string. Any function that is expecting to

be passed a character array or character pointer will accept either

version of date as an argument.

• Do not make the mistake of thinking that both versions of date are

interchangeable. They are not!

COP 3223: C Programming (Strings – Part 1) Page 14 © Dr. Mark J. Llewellyn

Character Arrays (Strings) Versus Character Pointers

• There are significant differences between these two declarations:

char date[] = “March 18”;

char *date = “March 18”;

• In the array version (the first one), the characters stored in date

can be modified, like the elements in any array. In the pointer

version (the second one), date points to a string literal, i.e.,

constant and as such cannot be modified.

• In the array version, date is an array name. In the pointer

version, date is a variable that can be made to point to other

strings during the execution of a program.

COP 3223: C Programming (Strings – Part 1) Page 15 © Dr. Mark J. Llewellyn

Character Arrays (Strings) Versus Character Pointers

• The declaration:

char *ptr;

causes the compiler to set aside enough space for a pointer that

will reference a character, not a string of characters. If we want
ptr to reference a string of characters, we‟ll have to do it

explicitly as in:

char aString[10], *ptr;

. . .

ptr = aString;

once the second line is executed, ptr will now point to (contain

the address of) the first character in aString.

COP 3223: C Programming (Strings – Part 1) Page 16 © Dr. Mark J. Llewellyn

Character Arrays (Strings) Versus Character Pointers

• Is this ok?

char *ptr;

ptr[0] = „H‟;

ptr[1] = „i‟;

ptr[2] = „\0‟;

Answer: No! Since ptr has not been initialized, it is basically not

pointing to any location in memory. The behavior of such an

operation will be unpredictable, but not correct.

COP 3223: C Programming (Strings – Part 1) Page 17 © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

• We‟ll be examining many different string handling functions in

standard libraries in C over the next few days, as well as developing

some of our own string handling functions. For now, we‟ll continue

to use scanf and printf for strings.

• The example program on the next page uses a function to count the

number of valid characters in a string read in from the keyboard.

As an almost total aside, the longest non-coined, non-technical word in the

English language is: antidisestablishmentarianism which contains 28 letters. The

longest word in the Oxford dictionary is: Pseudopseudohypoparathyroidism at 30

letters. Although its Welsh not English, one of the longest names of a place in the

world is the 58-character name:

Lllanfairpwllgwyngyllgogerychwyrndrobwllllantvsiliogogogoch

which is the famous name of a town on Anglesey, and island of Wales. The

longest technical word is: methionylthreon…isoleucine, the largest known protein

(consisting of 34,350 amino acids) more commonly known at Titin at 189,819

letters.

COP 3223: C Programming (Strings – Part 1) Page 18 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 1) Page 19 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 1) Page 20 © Dr. Mark J. Llewellyn

Practice Problems

1. Write a program that reads in two strings and

then determines if the strings are the same or

not.

2. Write a program that uses the string length

function from the example program on page 18

in conjunction with another function which

reverses the order of the characters in the string.
Thus the input string: hello would be returned

as olleh.

